
1

Input-Output Organization -UNIT 4

� Input-Output Interface

� Asynchronous Data Transfer

� Modes of Transfer

� Priority Interrupt

� Direct Memory Access

� Input-Output Processor

�Data transfer between central computer and
I/O devices may be handled in a variety of
modes.
�Some modes use CPU as intermediate path
and others transfer data directly to and from
memory unit.

�Data Transfer to or from peripheral can be
handled in one of three possible modes :
� Programmed I/O
� Interrupt-Initiated I/O
� Direct Memory Access (DMA)

 Modes of Transfer

Programmed I/O method

• In programmed I/O method, CPU stays in a
program loop until the I/O unit indicated that it is
ready for data transfer.

• This is a time consuming process since it keeps the
processor busy needlessly.

• It can be avoided by using Interrupt facility and
special commands to inform the interface to issue
an interrupt request signal when data are available
for the device.

Q-In programmed I/O , CPU reads
the data from data register , if flag is
equal to

A= 0
B=1

• An alternative to the CPU constantly monitoring the flag is to let the interface inform the
computer when it is ready to transfer data.

• This mode of transfer uses the interrupt facility. While the CPU is running a program, it
does not check the flag.

• However, when the flag is set, the computer is momentarily interrupted from proceeding
with the current program and is informed of the fact that the flag has been set.

• The CPU deviates from what it is doing to take care of the input or output transfer.

• After the transfer is completed, the computer returns to the previous program to
continue what it was doing before the interrupt.

• The CPU responds to the interrupt signal by storing the return address from the program
counter into a memory stack and then control branches to a service routine that
processes the required I/O transfer.

• In principle, there are two methods for accomplishing the way that the
processor chooses the branch address of the service routine varies from one
unit to another..

• One is called vectored interrupt and the other, nonvectored interrupt. In a
non vectored interrupt, the branch address is assigned to a fixed location in
memory.

• In a vectored interrupt, the source that interrupts supplies the branch
information to the computer. This information is called the interrupt vector.

Priority Interrupts

Priority
 - Determines which interrupt is to be served first when two or more requests
 are made simultaneously
 - Also determines which interrupts are permitted to interrupt the computer while
 another is being serviced
 - Higher priority interrupts can make requests while servicing a lower priority
 interrupt

A priority interrupt is a system that establishes priority over the
various sources to determine
 - which condition is to serviced first when two or more requests
 arrive simultaneously
 -which conditions are permitted to interrupt the computer while
 another request is being serviced

Priority Interrupts

Priority Interrupt by Software (Polling)

 Polling procedure is used to identify highest priority source by software
 means

 - common branch address for all the interrupts

 - Priority is established by the order of polling the devices(interrupt sources)
 - highest priority device is tested first and if interrupt is on , control
 branches to service routine for this source otherwise next lower priority
 source is tested

 - Flexible since it is established by software
 - Low cost since it needs a very little hardware

 - Very slow
 - if there are many interrupt time required to poll may exceed time available to
 service IO device

Priority Interrupts

Priority Interrupt by Hardware

 - Require a priority interrupt manager which accepts all the interrupt requests
 to determine the highest priority request.

 - Fast since identification of the highest priority interrupt request is identified by
 the hardware

 - Fast since each interrupt source has its own interrupt vector to access
 directly to its own service routine

 - Can be addressed using serial or parallel connection of interrupt lines.
 Example of serial is Daisy chaining Priority

Hardware Priority Interrupts – Daisy Chain

Device 1

PI PO

Device 2

PI PO

Device 3

PI PO

INT

INTACK

Interrupt request

Interrupt acknowledge

To next

device

CPU

VAD 1 VAD 2 VAD 3
* Serial hardware priority function
* Interrupt Request Line
 - Single common line
* Interrupt Acknowledge Line
 - Daisy-Chain

-Serial connection of all device that request an interrupt
-Device with highest priority placed in first position followed by devices with lower
 priority and so on.
-Interrupt generated by any device � signals low state interrupt line
-CPU responds by enabling interrupt acknowledgement (INTACK) line.
- device receives PI=1 and passes to next only when not requesting else PI=0
-Thus device with PI=1 and PO=0 is one with highest priority requesting interrupt

Hardware Priority Interrupts – Daisy Chain

Example: Daisy chain working

IEN: Set or Clear by instructions ION or IOF

IST: Represents an unmasked interrupt has occurred.

INTACK enables tristate Bus Buffer to load VAD generated
by the Priority Logic

Interrupt Register:
 - Each bit is associated with an Interrupt Request from
different Interrupt Source - different priority level
 - Each bit can be cleared by a program instruction
Mask Register:
 - Mask Register is associated with Interrupt Register
 - Each bit can be set or cleared by an Instruction

Parallel Priority Interrupts

Parallel Priority Interrupts

Mask
register

INTACK
from CPU

Priority
encoder

I 0

I 1

I 2

I 3

0

1

2

3

y

x

ISTIEN0

1

2

3

0

0

0

0

0

0

Disk

Printer

Reader

Keyboard

Interrupt register

Enable

Interrupt
to CPU

VAD
to CPU

Bus
Buffer

Priority Encoder

Determines the highest priority interrupt when more than one
interrupts take place

Priority Encoder Truth table

1 d d d
0 1 d d
0 0 1 d
0 0 0 1
0 0 0 0

I0 I1 I2 I3

0 0 1
0 1 1
1 0 1
1 1 1
d d 0

x y IST

x = I0' I1'
y = I0' I1 + I0’ I2’

(IST) = I0 + I1 + I2 + I3

Inputs Outputs
Boolean functions

Interrupt Cycle

At the end of each Instruction cycle
 - CPU checks IEN and IST
 - If IEN · IST = 1, CPU -> Interrupt Cycle

SP ← SP - 1 Decrement stack pointer

M[SP] ← PC Push PC into stack

INTACK ← 1. Enable interrupt acknowledge

PC ← VAD Transfer vector address to PC

IEN ← 0 Disable further interrupts

Go To Fetch to execute the first instruction in the interrupt service
routine

Initial and Final Operations

JMP PTR

JMP RDR

JMP KBD

JMP DISK0

1

2

3

Program to service
magnetic disk

Program to service
line printer

Program to service
character reader

Program to service
keyboard

DISK

PTR

RDR

KBD

255
256

750

256
750

Stack

Main program

current instr.749
KBD
interrupt

2

VAD=00000011 3

4

Disk
interrupt

5

6

7

8

9 10

11

1

Initial and Final Operations

Each interrupt service routine must have an initial and final set of
operations for controlling the registers in the hardware interrupt system

Initial Sequence
 [1] Clear lower level Mask
reg. bits
 [2] IST <- 0
 [3] Save contents of CPU
registers
 [4] IEN <- 1
 [5] Go to Interrupt Service
Routine

Final Sequence
 [1] IEN <- 0
 [2] Restore CPU registers
 [3] Clear the bit in the
Interrupt Reg
 [4] Set lower level Mask reg.
bits
 [5] Restore return address,
IEN <- 1

* Block of data transfer between high speed devices like Disk and
Memory
* DMA controller - Interface which takes over the buses to manage
the transfer directly between
 Memory and I/O Device, freeing CPU for other tasks
* CPU initializes DMA Controller by sending memory address and the
block size (number of words)

 Address register:
Contains an address to specify Desired location in memory
Word count register
Holds no. of words to be transferred
Control register
Specifies the mode of transfer

Direct Memory Access

24

Direct Memory Access

Data bus
Read
Write

ABUS
DBUS

RD
WR

Bus request

Bus granted

BR

BG
CPU

Data bus

DMA select

Read

Write

Bus request

Bus grant

Interrupt

DS

RS
RD

WR

BR

BG

Interrupt

Data bus
buffers

Address bus
buffers

Address register

Word count register

Control register

DMA request

DMA acknowledge to I/O device

Control
logic

In
te

rn
al

 B
us

 Fig 2: Block diagram of DMA controller

Fig 1: CPU bus signals for DMA transfer

Address bus

25

DMA Transfer can be made in several ways

(1)Burst Transfer : a block sequence consisting of memory words is transferred
 in continuous burst while the DMA controller is master of memory
 bus

 - This mode of transfer is needed for fast devices such as magnetic
 disk where data transmission cannot be stopped or slowed down
 until an entire block is transferred

(2) Cycle stealing : Alternative technique called cycle stealing allows DMA controller to
 transfer one data word at time after which it must return control of
 the buses to the CPU.

 - CPU merely delays its operation for one memory cycle to allow the
 direct memory I/O transfer to “steal” one memory cycle

Direct Memory Access

RD and WR is bidirectional

When BG=0 CPU can communicate with DMA Register
When BG=1 CPU left the buses and DMA can communicate directly with memory

26

DMA I/O Operation

DMA is first initialized by CPU. After that DMA starts and continues to transfer data
between memory and peripheral unit until an entire block is transferred.

CPU initializes the DMA by sending following information through data bus:

(1) Starting address of the memory block (for read/write)

(2) Word Count (no. of words in memory block)

(3) Control to specify mode of transfer (E.g. read/write)

(4) A control to start DMA Transfer

27

DMA Transfer

BG

BR
CPU

RD WR Addr Data

Interrupt
Random-access
memory unit (RAM)

RD WR Addr Data

BR

BG

RD WR Addr Data

Interrupt

DS

RS DMA
Controller

I/O
Peripheral

device
DMA request

DMA ack.

Read control

Write control

Data bus

Address bus

Address
select

28

I/O Processor - Channel
Channel
 - Processor with direct memory access capability that communicates with I/O devices
 - Channel accesses memory by cycle stealing
 - Unlike DMA Controller, IOP can fetch and execute its own instruction
 - IOP Instructions (Commands) specially designed to facilitate I/O transfer.

 - Data gathered in IOP at device rate and bit capacity while CPU executing own program
 - Transfer between IOP and Device similar to Programmed I/O and
 transfer between IOP and Memory similar to DMA
 - CPU is master while IOP is slave processor
- CPU initiates the channel by executing a channel I/O class instruction and once initiated,
channel operates independent of the CPU

PD PD PD PD

Peripheral devices

I/O bus
Input-output
processor

(IOP)

Central
processing
unit (CPU)

Memory
unit

M
em

or
y

Bu
s

29

 Channel CPU Communication

Send instruction
to test IOP.path

If status OK, then send
start I/O instruction

to IOP.

CPU continues with
another program

Transfer status word
to memory

Access memory
for IOP program

Conduct I/O transfers
using DMA;

Prepare status report.

I/O transfer completed;
Interrupt CPU

Request IOP status

Transfer status word
to memory locationCheck status word

for correct transfer.

Continue

CPU operations IOP operations

